
Spherical anharmonic oscillator in self-similar approximation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 2011

(http://iopscience.iop.org/0305-4470/26/8/022)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys k' Math. Gen. 26 (19s) 7.0ll-ZCI19. Printed in the LK 

Spherical anharmonic oscillator in self-similar 
approximation 

E P Yukalova and V I Yukalov 
laboratory of Theoretical Physic?., Joint Institute lor Nuclear Research, PO Box 79, 
Dubna, Russia 

Received 12 Mamh 1992, in final form 26 October 1992 

AbsiracL The method of self-similar approximations is applied here for calculating the 
eigenvalues d the three-dimensional spherical anharmonic oscillator. The advantage of 
this method is in its simplicity and high accuracy. For the case mnsidered we show 
that based only on two terms of p n u b a t i o n  theory we find the spectrum with an umr 
not wrSe than of the order lor the whole range of anhannonicity parameters, 
from zero up lo infinity, and for any energy levels. The mmparison with other known 
analytical methods proves that our method is more simple and accurate. 

1. Introduction 

Realistic physical problems are almost always so complicated that it is a very rare 
occasion when they can be solved exactly. The standard way of tackling them is to 
invoke perturbation theory. The standard situation is that the use of the latter yields 
a divergent series. When a number of terms in a series are hown  (about ten of 
them) then one may find an effective sum of the asymptotic series by means of some 
resummation technique. However, in the majority of realistic, that is complicated, 
cases one is able to extract only the fust few terms of perturbation theory, generally 
not more than two of them. In a situation like that the usual resummation techniques 
are not applicable. A thorough discussion of these difficulties can be found in 
Stevenson [I]. 

A method to lind an effective sum of a divergent series, or an effective limit of 
a divergent sequence, with only a few terms has been recently suggested [Z]. The 
latter was called the method of self-similar approximations since it was based on self- 
similar relations for subsequent terms, which forces a divergent sequence to become 
convergent. This method [Z] was shown [Z-51 to be quite successful for various 
problem in statistical physics and quantum mechanics, where the ground-state energy 
is the main interest 

Here we shall demonstrate that the method of self-similar approximations [2] 
works well for calculating not solely the ground-state energy but also the whole 
spectrum. 'RI this end, we consider the problem whose mathematical structure is 
typical of many problems of statistical mechanics and field theory. This is the three- 
dimensional anharmonic oscillator. The divergences arising in applying perturbation 
theory to it are'of the Same nature as those appearing in the perturbation-theory 
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calculatiok for the majority of statistical models with Hamiltonians containing four- 
operator interactions and also for quantum field theories having the q4 structure. A 
review of these questions has been given by Simon [6]. 

In section 2 we present the scheme of the method of self-similar approximations, 
all details of which have been expounded in the early papers 1 2 4 .  In section 3 
we apply this method to the three-dimensional anharmonic oscillator with spherical 
symmetry. We show that our method, invoking only two terms of perturbation theory, 
allows the calculation of the whoIe spectrum with very good accuracy, within the order 
of for arbitrary anharmonicity constants ranging from zero up to infinity and 
for all energy levels. In section 4 we analyse the other hown analytical methods: the 
modified perturbation theory, the quasiclassical approximation, the largedimensional 
expansion and the shifted large-dimensional expansion. The analysis proves that 
among these methods ours is the simplest and most accurate, if accuracy is defined 
by the maximal error for all anharmonicity constants and energy levels, not only for 
some of them. Section 5 is a conclusion. 
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2. Scheme of method to be used 

We shall not repeat here the foundation and nuances of the method of self-similar 
approximations which have been explained in detail in [2-51, but we shall formulate 
its scheme needed for further investigation. 

Assume that we are interested in a function f(n,g), in which n is a 
multiparameter, for instance enumerating the energy levels, and g is a coupling 
constant. By perturbation theory or an iterative procedure we obtain a sequence 
of approximations f k ( n ,  g) with k = 0,1,2.. .. Introduce an additional sequence 
of functions z k ( n , g )  whose role is to govern the convergence of the sequence of 
complex functions 

The governing functions are to be defined by one of the fixed-point conditions, for 
example by the equation 

f.dn,s) = fdn,g,dn,g)). (1) 

(2) 
d 
d,fk(n,gr4 = o  2 = zk(%g). 
.. 

Define the coupling function g(n, f )  by the equality 
fu(n,g,dn,g)) = f 9 = d%f) 

in which 
(3) 

.(n,s) = zu(n,g) = Zl(n,g). 
Introduce the distribution of approximations 

ykr = If.(n,g(n,f),Zk(n,g(n,f)))- fk(n,g(n,f) ,r*(n,g(n,f))))-'  (4) 

Ykir (n , f )df  = 1- (5) 

satisfying the normalization 
J . ( w )  

JI*(n.ri) 

The function f,(n,g) in equation (5) is merely the self-similar approximation for 
the function f ( n , g ) .  Function (4) is called the distribution of approximations since 
it describes, according to (S), their distribution between fk(n,g) and the self-similar 
approximation. 
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3. Spherical anharmonic cscillator 

The threedimensional anharmonic oscillator with spherical symmetry can be reduced, 
as is hown, to the one-variable problem with the radial Hamiltonian 

in which m,w,X are positive parameters; the radial variable r E (0,m); the 
azimuthal quantum number 1 = 0, 1,2, .  . .. 

As an initial step for perturbation theory it is reasonable to choose the harmonic 
form 

1 d2 1 ( 1 +  1) mwir2 Ha = + - 
2 m d r 2  2mrz $2 

whose energy levels are given by the expression 

E:,) = (2n + 1 + s)wu n , l =  0,1,2,. . . . (8) 

Here n = 0,1,2,. . . is the radial quantum number and 1 = 0,1,2,. . . is the 
azimuthal quantum number. For the principal quantum number we shall use the 
notation v 2n + 1 from which the qualification I < v automatically follows. Let us 
note that different authors use slightly different notation for these quantum numbers. 
Fbr example, the tadial quantum number is often written as n,. However, the latter 
will appear in what follows about 100 times, therefore to write n, in the place of n 
would make the majority of formulae unreasonably cumbersome. This is why we opt 
for the simpler notation defined above, which S also often used in the literature for 
dealing with anharmonic oscillators. 

For what follows it is convenient to introduce the dimensionless coupling, g, and 
trial, z, parameters, 

g 3 X/w3 z wu/w (9) 

H ( E )  z H / w  Hu(E) H a / w  E (mw)' lzr .  (10) 

as well as the dimensionless Hamiltonians 

Then, equations (6) and (7) read 

The eigenfunctions of H,(E) are 
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where Lk( .) is an associated Laguerre polynomial. 

approximate expressions 

E P yukalova and VI Izlkalw 

Using the RayleighSchrodinger perturbation expansion, we can find the 

e k ( n , l , g , z ) =  E$)/w 1c=0,1,2 ,... (12) 

eo(n, l ,g ,z)  = ( u t  t ) z  U ~ 2 n  + 1. (13) 

for the eigenvalues of H(<), starting from the zero approximation 

For the first approximation we get 

where 

Expression (15) has the following limiting properties: 

lim Yn{ = 
n,f-0 

~ , ~ = 2 n  n-+ce( l<co)  

T n f E - ; l  l - c o ( n < c o )  

The second approximation of (12) is 

The fixed-point condition (2), Le. 

d - e , (n , i , g , z )=O z = z ( n , l , g )  dz 

yields the equation 

3 z - z - 6gynl = 0. 

The solution to the latter gives the governing function 
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gnI = (9&Yni)-' = 0.064150/yni. 

Perturbation theory corresponds to the weak coupling limit, that is to g < gnl .  
-+ CO, as n,  1 -t oo,because of which However, as is seen 

gni  4 0  n , l - + m .  

Therefore, the weak coupling region practically disappears for higher eigenvalues. 
Using for brevity the notation 

The latter, together with (13), is equivalent to the equation 

where 

The limiting properties of (25) are 

lim a n i = - '  lim anf  = 0. 3 
1-53 3 lim U,! = 3 

n,f-.O n-m 

Substituting distribution (24) into normalization (S) ,  we come to the equation 

e X n , l , s ) / ( v +  $)'- 1 
e f ( n , l , g ) / ( v + $ ) 2 - 1  
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for the self-similar approximation e,(n, 1,g) of the anharmonic oscillator spectrum. 
The function el(n,I ,g)  in (26), according to (14) and (18), can be written as 

E P Yukalova and VI Yukalov 

where the governing function is given by (19). 

yielding in the weak coupling limit 

and in the strong coupling limit 

The asymptotic forms of the spectrum e,( n, 1,g) can be easily found from (26) 

e , ( n , l , g ) - ( u t ~ ) ( l t ~ g y , r )  g - 0  (27) 

The weak coupling limit (27) coincides with the corresponding exact expansion in 
powers of g, which can be checked by putting z = 1 into (14). 

For the ground-state energy from (27) and (28) we have 
e,(O,O,g) N 3 t Ys 9 -+ 0 
e,(O,O,g) N iexp(-&)(10g)'/3 = 2.393631g1I3 g -+ M. (29) 

The behaviour of highly excited energy levels in the self-similar approximation 
depends on the ratio 

1 1 e =-=-....- 
U 2 n t l  nl- 

which defines the l i t s  following from (U), 

and from (W), 
Ynf c- u(i - de",) - 

- 6  U - 0 0 .  
27 30 anl N - - 

3 - e;, (3 - e;,y 
In the case when U - 00 but 1 < 00, we have On, - 0; then 

However, it can be that U - M, 1 -+ 00 and e,, - 0 ,  where the latter is finite 
(0 < 0 < 1). Then for small 0 (31) and (32) give 

7-1 c- U an,--$ e,, - 0. (33) 

ynz V(I - ;ez) a,, N - f  t ;e2. (34) 

e*(n ,49)  = p 1/'4u4/3(6g)'/3 = 1.372338~~/~g'/' .  (35) 

The strong coupling limit (28) together with (33) yields 

In the intermediate case, when 0 < e,, < 1, the expression (28) for the excited 
energy levels does not allow such a simplification as in (35). 

The accuracy of the self-similar approximation given by (26) can be evaluated 
by comparing it with exact numerical calculations. The latter have been done by a 
direct numerical solution of the corresponding Schradinger equation written in the 
matrix form [7,8]. The low-lying levels have been accurately computed using Hill 
determinants [9] and recurrence relations [lo, 111. 

Comparing the self-similar approximation e,(n,  l ,g)  defined in (26) with the 
numerical results [7-111, we find that for any value of the anharmonicity parameter 
g E (0, w) and for any energy levels (n,l  = 0,1,2,. . .) the maximal error is about 
0.3%. 
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4. Comparison with other methods 

It would be worth comparing the results obtained with those given by other analytical 
methods. In this comparison, it is natural to define the accuracy of a method by the 
maximal error of its results for all anharmonicity parameters and energy levels. That 
is, we. shall define the accuracy of an approximate method, yielding eapp( n, 1 ,  g ) ,  by 
the maximal error 

in which e ( n , l , g )  is an exact numerical result 
Consider first the quasiclassical approximation applied to the three-dimensional 

anharmonic oscillator [12-141. The Bohr-Sommerfeld wndition for the energy levels 
leads to a very cumbersome transcendental equation, invoking the complete elliptic 
integrals of the first, second and third kinds and, in addition, a system of complicated 
equations for the turning points expressed through the Jacobian elliptic functions. 
An analysis of these equations show [U, 161 that the quasiclassical approximation 
is quite accurate for high energy levels and strong anharmonicity, yielding an exact 
asymptotic expansion in the limit g ,  n + 03. Then 

e ( n , l , g )  U 1 . 3 7 6 5 0 7 ~ ~ / ~ g ' / ~  u , g  -+ m. 

However its accuracy drastically worsens for the low-lying energy levels, especially for 
the ground-state level. The maximal error of the latter level found in the quasiclassical 
approximation is 3% for the isotropic case and reaches 18% for an anisotropic model. 

Another known approach for treating systems with strong interaction is the 
modified, or renormalied, perturbation theory [17-211. In this approach one 
renormalizes the sequence of approximations according to (1) and define the 
governing functions either from the principle of minimal difference [17-191 or from 
the principle of minimal sensitivity [20,21]. The latter, as applied to the anharmonic 
oscillator, gives more accurate results than the former [4,20]. The accuracy of the 
modified perturbation theory with the principle of minimal sensitivity of the form 
(2) has been carefully analysed [U, 16, 201 for the anharmonic oscillator. The first- 
order modified perturbation theory gives the energy spectrum (14) with the governing 
function defined by (17). The maximal error of spectrum (14) is 2%. The second- 
order approximation corresponds to the energy spectrum (16) with the governing 
function defined by the condition 

d 
- e Z ( n , l , g , z )  = 0. dz 

The latter equation has no positive solutions for U < 2 and for Y 3 2 its solution 
being substituted into (16) leads to the maximal error of about 1%. 

In recent years it has been shown that even if the results of physical interest are 
in three dimensions, it is advantageous to work in D dimensions and use 1/D as a 
perturbation expansion parameter. This largedimension technique has been briefly 
called the 1/D expansion. The latter provided, in particular, a new way of solving the 
Schradinger equation for spherically symmetric potentials. The 1/D expansion for 
the anharmonic oscillator was used in [22,23]. The results for the energy are written 



2018 E P fikalova and V I  bkalov 

in the form of complicated series, even for low-lying levels. It must be admitted that 
the accuracy of the 1/D expansion is, to put it mildly, not so good. For example, 
when seven terms of the 1/D expansion are taken into account and, in addition, the 
resulting series are summed by means of the Pad&Borel transformation, even then 
the accuracy of the ground-state energy with g % 1 is about 1%, and the error quickly 
increases as g + 00. Wr higher energy levels the 1/ D expansion also becomes less 
accurate with an error increasing together with the radial quantum number n since 
higher-order perturbation contributions to the energy contain powers of n in the 
numerator. 

The amracy of the largedimension expansion can be drastically improved 
invoking the so-called shifted 1/D expansion [24,25]. In the latter, the expansion 
parameter is modified by the replacing the space dimensionality D by D - a, where 
a is a suitable shift chosen so that the first-order shifted expansion would give the 
exact result for the energy of the harmoniwscillator potential. It is necessary to 
stress that, in order to obtain the shifted 1/D expansion, one needs to resort to the 
RayleighSchr6dinger perturbation theory as well. Using the approach of [Z] we 
have calculated the spectrum of the anharmonic oscillator. The iirst-order shifted 
expansion needs the second-order perturbation theory; its maximal error is about 
10%. For the second-order shifted expansion one needs to invoke the fourth-order of 
the RayleighSchrodinger perturbation theory, which is quite complicated and even 
so gives the maximal error about 0.6%. Thus, if we use, as in our method, only the 
second-order perturbation theory, we have for the shifted largedimension expansion 
the maximal error of the order lo-'. It is also worth noting that the 1/D expansions, 
including the shifted one, are only applicable to spherically symmetric potentials, 
therefore, being useless for oncdimensional problems. 

5. Conclusion 

The method of self-similar approximations [2] gives an elegant equation for the energy 
eigenstates of the three-dimensional spherical anharmonic oscillator. It can be applied 
with equal success to the one-dimensional anharmonic oscillator [16]. In all cases the 
accuracy of the method is within the maximal error of the order of The method 
of self-simiiar approximations surpasses other analytical approximation methods in its 
domain of applicability, the accuracy of its results and its simplicity. 
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